Courses
Mechanical Technologies and Maintenance
Course #: 286036
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Scope of Engineering Mechanics; Branches of Engineering Mechanics; Statics; Newton's Laws; Representation of Forces; Combining Collinear Forces; Combining Concurrent Forces; Combining Noncurrent Forces; Center of Gravity of Simple Body; Center of Gravity of Composite Body.
Special Notes:
Course #: 286037
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Bodies at Rest; Free Body Diagrams; Balanced Concurrent Forces; Balanced Noncurrent Forces; Equilibrium involving Friction; Characteristics of Friction; Bodies on Level Surfaces; Bodies on Inclined Surfaces.
Special Notes:
Course #: 286038
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Branches of Dynamics; Kinematics and Kinetics; Translation and Rotation; Translation along a Straight Path; Translation along a Curved Path; Angular Motion of a Straight Line; Motion of a Particle on a Rotating Line; Rolling of a Single Body; General Plane Motion of a Particle in a Typical Mechanism.
Special Notes:
Course #: 286039
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Kinetics; Force-Mass-Acceleration Method; Work-Energy Method; Applications of Work-Energy Method; Impulse-Momentum Method; Collision of Two Bodies.
Special Notes:
Course #: 286010
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Physical Properties of Fluids; Intensity of Pressure; Water Pressures on Simple Immersed Surfaces; Buoyancy; Specific Gravity of Solids; Flow of Liquids Through Pipes; Losses of Head in Pipes; Bernoulli's Theorem; Venturi Meters.
Special Notes:
Course #: 286011
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Resultant Forces Due to Liquid Pressure; Forces on Complex Surfaces; Graphic Representation of Pressures; Location of Center of Pressure; Uniform Flow of Water Through Pipes; Hydraulic Grade Line; Use of Chezy-Darcy Formula; Use of Hazen-Williams Formula; Design of Pipes; Discharge Through Orifices and Fittings.
Special Notes:
Course #: 286012
Duration: 10 hours
Course Prerequisites: Plane Trigonometry (2309A-B); Logarithms (5254); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Nonuniform Flow of Water in Pipes with Nozzles; Compound Pipes in Series and in Parallel; Flow of Fluids Other Than Water; Reynolds Number; Flow of Water in Open Channels; Design of Channels; Rate of Discharge Through Weirs.
Special Notes:
Course #: 286001
Duration: 10 hours
Course Prerequisites: Hydraulic Components: Actuators, Pumps, and Motors (286061);
What Students Learn: Modern Centrifugal Pumps; Operating Principles of Pumps; Classifications and Types of Pumps; Fundamental Pump Terms: pressure, vapor pressure, head, losses, cavitation, net positive suction head, specific speed, viscosity; Centrifugal Pump Performance Curves; Types of Pumping System Curves.
Special Notes:
Course #: 286002
Duration: 10 hours
Course Prerequisites: Hydraulic Components: Actuators, Pumps, and Motors (286061);
What Students Learn: Construction details of Centrifugal Pumps; Applications of Centrifugal Pumps; Installation and Maintenance of Centrifugal Pumps; Troubleshooting problems associated with Centrifugal Pump Operation.
Special Notes:
Course #: 286003
Duration: 10 hours
Course Prerequisites: Hydraulic Components: Actuators, Pumps, and Motors (286061);
What Students Learn: Rotary Pumps: classifications, installation and operating principles; Reciprocating Pumps: classifications, installation and operating principles; Power Pumps; Applications of Rotary and Reciprocating Pumps; Troubleshooting Rotary and Reciprocating Pumps.
Special Notes:
Course #: 286013
Duration: 10 hours
Course Prerequisites: Metric System (186011);
What Students Learn: Types of Compressors; Types of Comparison; Centrifugal Compressors; Axial-Flow Compressors; Construction Details of Centrifugal and Axial-Flow Compressors; Performance Curves; Installation and Performance Tests.
Special Notes:
Course #: 286014
Duration: 10 hours
Course Prerequisites: Metric System (186011);
What Students Learn: Reciprocating Compressors; Cylinder and Piston Arrangements; Construction Details of Various Types; Selection, Installation, and Operation of Reciprocating Compressors; Rotary Compressors; Construction Details; Lobe Compressors; Screw Compressors; Troubleshooting Rotary Compressors.
Special Notes:
Course #: 286093
Duration: 10 hours
What Students Learn: Preview
Bearings of one type or another have been used since the invention of the most primitive machines. Bearings support rotating machine shafts as well as translating movement in machine components, and bearings keep the components in correct alignment.
This study unit, will primarily discuss plain bearings. However, so that students understand the fundamental differences, it will briefly cover antifriction bearing operation. Students will get a basic understanding of the differences between plain bearings and antifriction bearings. The study unit will then discuss the various types of plain bearings and their uses in greater detail.
Because bearings are used in such a wide range of applications, there are many factors to consider when selecting a bearing for a specific need. It is important that students understand these factors and the process for choosing the correct bearing and lubrication method for an intended application. In this study unit, students will also learn about the different techniques and tools used to properly install, lubricate, and remove bearings.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286094
Duration: 10 hours
What Students Learn: Preview
Bearings and seals are used in most every type of machine. This study unit will help you learn how to identify, lubricate, maintain, and replace antifriction bearings and seals.
As students know, there are two types of bearings, plain and antifriction. Plain bearings use a sliding motion to reduce friction, while an antifriction bearing contacts the shaft it supports with a rolling element. This rolling motion helps reduce friction. The rolling motion produces less friction than the sliding motion produced from plain bearings. Therefore, the rotation of a shaft is smoother with an antifriction bearing.
In this study unit, students will learn about the various types of antifriction bearings and their different parts. They will also learn about the basic characteristics of these bearings, and how to apply them to a particular shaft. The study unit will also cover proper installation and maintenance and properly applying them. An important part of proper application is correctly combining the various materials available in bearings with the material the shaft is made from.
This study unit will also help students better understand seals. They will learn what a seal does, the different types of seals available, and how they are used. Students will also learn; the various types of material that seals are manufactured from, their advantages, the importance of maintaining bearings, and how to replace seals when they fail.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286091
Duration: 10 hours
What Students Learn: Preview
Since the development of machinery, there has been a war against friction. Friction causes machinery to vibrate excessively, sound louder, use more energy to do a given job, and, most importantly, wear out faster. To counter friction, lubricants have been developed.
Lubricants were once basic animal fats and plant oils used on simple machines. Today's lubricants are chemical compositions specially designed for specific types of machines and their work environment. There are now hundreds of types of oils and grease to select from, each tailored specifically for the machine or an individual component of any given machine.
This study unit is designed to give students the information they need to understand how lubricants are blended into these very special compounds and how they are selected for various applications.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286092
Duration: 10 hours
What Students Learn: Preview
Lubricating equipment is one of the most important industrial maintenance activities performed. Lubricants reduce friction, which saves on energy costs. They reduce wear, which saves on equipment maintenance costs. Proper lubrication significantly reduces machine downtime resulting from broken or worn out components. In addition, proper lubricating practices help keep a machine in tolerance for a longer period of time.
In today's world of twenty-four-hour-a-day, seven-days-a-week, plant operation, the role of lubrication takes on even greater importance. Equipment must be lubricated on a timely schedule, in the proper amounts, and with the correct lubricants to sustain long work cycles between planned shutdowns. This study unit will show you how to properly apply lubrication and maintain lubrication systems.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286015
Duration: 10 hours
What Students Learn: Gears and Enclosed Gear Drives; Electric Motors; Maintenance of Gearing; Precision Chains and Chain Drives; Belt Drives; Correction for Shaft Misalignment; Clutches; Application Considerations for Mechanical Power Transmission.
Special Notes: This updated course replaces course 2606.
Course #: 2608A-B
Duration: 20 hours
Course Prerequisites: Practical Measurements (Block X22);
What Students Learn: PART 1 (2608A). Purpose of Testing Physical Properties of Materials; Mechanical Testing Machines; Tension Test; Compression Test.
PART 2 (2608B). Transverse or Beam Test; Shear and Torsion Tests; Hardness Testing, Impact Testing; Miscellaneous Tests for Ductile Materials; Testing of Nonmetals.