Courses
Refrigeration and HVAC
Course #: 1842A-C
Duration: 30 hours
What Students Learn: This text explains the use of drawings in representing buildings and the relation between drawings, blueprints, and specifications.
PART 1 (1842A). Blueprints; Drawings and Specifications; Scale Detail; Use of the Scale; Indications of Materials; Parts of Buildings; Steel Framing Plans; Drawings for Reinforced Concrete; Frame Buildings; Doors and Windows.
PART 2 (1842B). Interior Woodwork; Stairs; Plumbing; Heating; Drawing for a Residence.
PART 3 (1842C). Plans, Elevations, and Details; Drawings of an Apartment Building.
Special Notes: Includes 5 blueprints.
Course #: 686005
Duration: 10 hours
Course Prerequisites: Formulas (186012); Practical Measurements (Block X22);
What Students Learn: Effects of Forces on Materials; Stress and Deformation; Elastic Failure; Cohesive Properties of Solids; Heat and Cold Treatment; Modulus of Elasticity; Temperature Stresses; Structural Members; Tension Members; Shear; Connection of Steel Members; Members Subjected to Compound Stress; Beams; Columns; Shafts; Rope Drives; Properties of Metals, Nonferrous Metal, and Alloys.
Special Notes: This updated course replaces course 5887.
Course #: 5011
Duration: 10 hours
Course Prerequisites: Practical Measurements (Block X22);
What Students Learn: Chemistry and Matter; Chemical and Physical Changes; Chemical Classification of Matter, Elements, Compounds, Mixtures; Atoms and Molecules; Dalton's Atomic Theory; Atomic Weights; Molecular Weights; Electron Theory of the Structure of the Atom; Study of Electrons, Protons, Neutrons, Atomic Structure of Elements; Fundamental Laws of Chemistry; Laws of Conservation of Matter and Energy; Law of Definite Proportions; Valence Formulas; Equations; Typical Problems in Chemistry; Solutions; Metals, Nonmetals, Acids, Bases, and Salts; Ions and Theory of Ionization; Conductivity, pH, Electrolysis, Electroplating; Periodic Grouping of the Elements; Properties and Uses of Metallic and Nonmetallic Elements and Their Compounds; Nuclear Energy; Organic Chemistry; Structural Formulas, Hydrocarbons, Fatty Acids, Carbohydrates, Aromatic Compounds, Plastics.
Course #: 286007
Duration: 10 hours
Course Prerequisites: Practical Geometry and Trigonometry (5567); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Matter and Energy; Scope of Mechanics; Forms of Matter; Forms of Energy; Physical Properties of Bodies; Motion of Bodies; Velocity; Acceleration and Retardation; Weight and Mass; Work and Energy; Coordinate Systems; Precision in Computations; Newton's Laws of Motion; Uniform Motion; Variable Motion.
Special Notes:
Course #: 286008
Duration: 10 hours
Course Prerequisites: Practical Geometry and Trigonometry (5567); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Friction; Nature of Friction; Sliding Friction; Rolling Friction; Machine Elements; Levers; Inclined Plane; Wedges and Screw Threads; Wheel and Axle; Tackle; Pulleys; Gearing; Belts and Chains; Simple Harmonic Motion Centrifugal Force.
Special Notes:
Course #: 2175A-B
Duration: 60 hours
What Students Learn: PART 1 (2175A). Specifications and Other Contract Documents; Knowledge Required for Writing Specifications; Specification Language; Outline Specifications; Preliminary Writing Procedures; Specifying Materials.
PART 2 (2175B). Instruction to Bidders; General Conditions; Modifications and Supplementary General Conditions; Forms of Proposal; Excavating and Grading; Concrete; Masonry; Miscellaneous Ironwork; Rough Carpentry; Finish Carpentry; Roofing and Sheet Metal Work; Metal Windows; Glass and Glazing; Caulking; Plastering; Structural Glass; Marble and Ceramic Tile; Vinyl Tile; Painting; Finishing Hardware.
Components: Specification Writing, Part 1 (2175A); Specification Writing, Part 2 (2175B);
Special Notes: Includes 13 drawings.
Course #: 6732
Duration: 10 hours
Course Prerequisites: Elements of Print Reading (6719A-B); Practical Measurements (Block X22);
What Students Learn: Basic Drawing Information; Kinds of Drawings; Dimensions, Symbols and Abbreviations; Descriptions of Piping Drawings; Pipe Materials and Methods of Manufacture; Valves; Piping Accessories; Piping Assembly; Fluid-Power Diagrams; Examples of Piping Drawings.
Course #: 6447A-B
Duration: 20 hours
Course Prerequisites: Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: PART 1 (6447A). Basic Principles and Matter; Sources of Heat and Measurement of Temperature; Heat Transmission and Measurement; Effects of Heat; Heat and Properties of Mixtures; Heat and Work; Combustion and Heat; Steam.
PART 2 (6447B). Weight and Pressure of Gases; Energy, Motion, and Air Velocities; Air and Air Mixtures; Air Movements and Ventilation; Air Conditions and Air Conditioning.
Course #: 6084A-B
Duration: 20 hours
What Students Learn: PART 1 (6084A). Comfort Air Conditioning; Heat Transmission through Buildings.
PART 2 (6084B). Types of Equipment; Air Distribution Systems; Automatic Controls and Cooling Systems; Noise Elimination, Zoning, and Special Conditions; Heat Pump.
Course #: VB25XX
Duration: 1.48 hours
What Students Learn: First year students and trainees will get off to the right start with this easy-to-follow yet complete program on the basics of air conditioning systems. Colorful graphics, along with real equipment and components, help students to quickly grasp the unique concepts associated with air conditioning operations. This program is truly a core program that explains residential or commercial air conditioning systems.
Components: Introduction to Fundamentals (VB2501); Cooling Equipment Operation (VB2502); Electrical Controls (VB2503); Troubleshooting (VB2504);
Course #: G14003
Duration: 160 hours
Course Prerequisites: Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Part 1 (H14003): Fundamentals of Refrigeration and Air Conditioning / Refrigeration and Air Conditioning Servicing
Course #: 006034
Duration: 10 hours
Course Prerequisites: AC Principles (Block A22);
What Students Learn: The use of electricity in an ever increasing number of applications has become an accepted pattern over the years. The microwave and range were originally regarded as luxury items. Today, however, they're viewed by many as necessities, along with dozens of other electric devices, ranging from computers to hair dryers. The acceptance of these devices as necessary for our convenience and comfort has paralleled the rise in our standard of living. Therefore, it is not surprising that electric heating has also been accepted in our homes, schools, offices, and industrial plants.
When students complete this study unit, you will be able to:
Course #: 4500B
Duration: 10 hours
What Students Learn: Types of Gas-Fired Central Heating Systems; Requirements for Efficient Heating; Heating Unit Controls and Their Adjustment; Methods of Flue Gas Analysis; Service Check List for Various Heating Units; Inspection of Gas-Fired Heating Units; Principles of Gas-Fired Air-Conditioning Units; Classification of Systems; Cooling and Heating Cycles of Vacuum-Type Absorption Units; Control Systems and Their Adjustment; Service Checklist for Various Cooling Units; Tables for Operational Service Work.
Course #: Block D20
Duration: 40 hours
What Students Learn: The eight lessons in this block provide the trainee with the skills and knowledge needed to perform those tasks associated with the trades of plumber and pipefitter. The program includes coverage of the most widely accepted materials used for pipe, fittings, and valves. The trainee will learn how to use the tools of the trades, with an emphasis on safety. In addition, the methods used to join pipe, and the procedures for supporting, installing, and testing piping systems, are discussed in detail. Common plumbing fixture installation and maintenance, along with a review of tanks, pumps, and boilers, are covered.
Components: The Trades of Plumbing and Pipefitting (286040); Pipes, Fittings, and Valves (286041); Plumbing and Pipefitting Tools (286042); Joining and Assembling Pipes (286043); Supporting, Installing, and Testing Pipes (286044); Plumbing Fixtures and Appliances (286045); Tanks, Pumps, and Boilers (286046); Insulation for Piping and Ducting (286047);
Special Notes: This updated course replaces Industrial Plumbing and Pipefitting, Block D10. Each study unit contains a progress examination.
Course #: 286040
Duration: 5 hours
What Students Learn:
Course #: 286041
Duration: 5 hours
What Students Learn:
Course #: 286042
Duration: 5 hours
What Students Learn:
Course #: 286043
Duration: 5 hours
What Students Learn:
Course #: 286044
Duration: 5 hours
What Students Learn:
Course #: 286045
Duration: 5 hours
What Students Learn:
Course #: 286046
Duration: 5 hours
What Students Learn:
Course #: 286047
Duration: 5 hours
What Students Learn:
Course #: 286087
Duration: 5 hours
Course Prerequisites: Trades Safety: Getting Started (186001); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Preview
Predictive technologies measure one or more characteristics of machine operation, calculate the expected life of the monitored system, and then estimate the condition of equipment and, therefore, the need for maintenance on that equipment. With this information passed along to a good preventive maintenance program, the preventive maintenance team can make informed decisions on task scheduling and make the most of its maintenance and inspection tasks.
Vibration analysis programs are the most commonly conducted PDM efforts. By performing inspection and repairs during downtime, uptime failures of the analyzed components are all but eliminated. PDM is more than vibration analysis, however; multiple technologies, such as infrared thermography, balance, alignment, and electrical signature analysis are part of many PDM programs. Because of these technologies, plants run better and are more competitive. PDM allows maintenance departments to predict when a unit will fail and plan its maintenance during a scheduled downtime, usually when the unit is cooler, cleaner, and not needed for the manufacturing process.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286088
Duration: 5 hours
Course Prerequisites: Trades Safety: Getting Started (186001); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Preview
When a company decides to begin a predictive maintenance (PDM) program, the first technology usually embraced is vibration analysis. Vibration analysis allows the technicians or other specially trained personnel to perform condition monitoring of equipment. Condition monitoring is used at first as a coarse comb to pull out those programs that will imminently cause downtime. Then the program can progress beyond condition monitoring to provide scheduling services for preventive maintenance and identification of redesigns that address repetitive faults.
This study unit will show you the basics of vibration analysis as performed with a data collector and a computer software program. These devices will be used to collect vibration measurement data and to store and display the results.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286089
Duration: 5 hours
Course Prerequisites: Trades Safety: Getting Started (186001); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Preview
Vibration analysis alone cannot perform sufficient condition monitoring to meet the needs of today's industry. Vibration analysis cannot easily find electrical faults, air leaks, electrical discharges, metal particles or contamination and breakdown of lubricants, or other important monitoring processes. Other technologies are needed for these tasks. This study unit will introduce you to these other technologies.
In this study unit, we will investigate many different technologies that can and should often be part of a good predictive maintenance program (PDM). This course is designed to discuss these technologies at a basic level. If you're considering working with one of these technologies, it's very important to understand how to operate the equipment involved and to gain additional equipment training from the manufacturer. These actions will provide you with a safe and profitable expanded PDM program.
Objectives
When a student complete this study unit, he and she will be able to:
Course #: VS40XX
Duration: 1.95 hours
What Students Learn: Make sure the temperature is just right at your facility with this comprehensive seven course video series. It will teach workers how HVAC components work together and how regular maintenance will ensure operating efficiency. This series is designed to give technicians a detailed understanding of air handlers, cooling systems and towers, condensers and electrical systems -- as well as an overview of basic troubleshooting techniques.
Components: HVAC &R: Complete System Troubleshooting (VS4001); Air Handlers: Mechanical Systems (VS4002); Air Handlers: Calibration (VS4003); Chillers, Part 1 (VS4004); Chillers, Part 2 (VS4005); Cooling Towers (VS4006); Condensers (VS4007);