Courses
Instrumentation and Process Control
Course #: Block B13
Duration: 63 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: This nine lesson block presents the fundamentals of electronic instrumentation and control systems as used in industry, The block begins with two lessons on physical properties and their measurement. This foundation enables the trainee to apply these principles in subsequent lessons covering: measuring instruments and signal processing, transducers, introduction to control systems, controllers, control system methods, data logging, transmission, display and control applications, maintenance, and troubleshooting.
Components: Physical Properties and Their Measurement, Part 1 (B1301); Physical Properties and Their Measurement, Part 2 (B1302); Measuring Instruments and Signal Processing (B1303); Transducers (B1304); Introduction to Control Systems (B1305); Controllers (B1306); Control System Methods (B1307); Data Logging, Transmission, and Display (B1308); Control Applications, Maintenance, and Troubleshooting (B1309); Progress Examination Booklet (B1320); Progress Examination (B1321); Progress Examination (B1322);
Course #: B1301
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1302
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1303
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1304
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1305
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1306
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1307
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1308
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: B1309
Duration: 7 hours
Course Prerequisites: Analog Circuit Measurement (Block A23); Basic Electronic Circuits (Block B24); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn:
Course #: Block B26
Duration: 36 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: This troubleshooting block thoroughly covers the systems encountered in a modern plant or service facility, including the many machines controlled by personal computers (PCs). Malfunctions in modern systems are more likely to be resolved by replacing an entire module or subsystem, rather than troubleshooting specific circuit boards. Plant electricians must often interface with devices that are connected to, or controlled by, PCs or programmable logic controllers (PLCs).
The block examines the industrial components used to monitor or influence the manufacturing process. Study units specifically cover troubleshooting motor control circuits, solenoids, electronic displays, sensors, touch pads and other devices that are directly or indirectly controlled by a computer's output and input signals. The last two units in the series cover the types of problems encountered by Instrumentation, PC, and Network technicians, relating to cables, connectors, power supplies and interference generated by other electrical equipment.
Components: Industrial Electronic Troubleshooting (086064); Electronic Troubleshooting of Industrial Motor Controllers (086065); Industrial Computer Networks (086069); Troubleshooting Sensing Devices and Systems (086066); Troubleshooting Industrial Control Systems and Output Devices (086067); Troubleshooting Industrial Computer Systems and Software (086068);
Special Notes: This new course replaces Troubleshooting Electronic Equipment and Systems, Block B06. Each study unit contains a progress exam.
Course #: 086064
Duration: 6 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: Preview
In a modern industrial plant, thousands (or even tens of thousands) of components work together to make a product. Many machines can now operate for long periods of time without requiring service. This is mainly due to excellent engineering and advances in metallurgy, the construction of electronic components, and the composition of lubricants. As long as proper maintenance work is performed, a machine may last for a very long time. However, it is inevitable that, at some point, one of those thousands of components will fail. A component failure will result in an equipment shutdown or a faulty product. At this time, workers with troubleshooting experience become invaluable.
A number of different skills are required to troubleshoot a machine or a piece of equipment effectively. In this study unit, students will learn about some of the more abstract troubleshooting procedures. These procedures will require the troubleshooter to collect information and focus on the failed component, not just connect a meter to make measurements.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 086065
Duration: 6 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: Preview
Industrial motor controllers are widely used in industry. You are probably familiar with some of the simple devices, such as multispeed and reversing AC across the line starters or contractors, used for controlling motors. In this study unit, we will cover the more complex solid state controllers used to control a motor's position and speed.
This study unit will begin by discussing how to troubleshoot simple DC motor controllers and stepper motor control systems. These systems are often used when the speed or position of a small motor must be controlled. Although small DC motors are covered in this unit, you can apply what you learn to larger DC motors since these motors simply have larger components.
This unit will also examine the electronic troubleshooting of servo systems. This section begins with the typical industrial DC servo system where a precision DC motor can be controlled to an exact location and speed. It then covers the troubleshooting of the newer DC brushless systems.
In the final section of this study unit, it will look at the troubleshooting of AC inverter drive systems. These drive systems control AC motors.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 086066
Duration: 6 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: Preview
Sensors are a very important part of any industrial control system. Sensors are provided to the input devices that send signals to these components responsible for monitoring and controlling an industrial system. Input devices indicate when an output device can be safely turned on and how long they should remain on.
In the past, the most popular input device was the limit switch. Although limit switches are still used, non-contact sensors, such as proximity sensors and photoelectric sensors, are becoming more common in industrial applications. Likewise, thermocouples were once popular for sensing temperature. However, modern systems may employ many different types of thermocouples, resistance temperature devices (RTDs), or even semiconductor temperature sensors. Some input devices rely on fiber optics and lasers to perform tasks. These devices and others may rely on their own small IC microchip planted within the sensor. Microchip equipped sensors can be placed on a simple four wire system along with hundreds of other sensors, allowing for a networked grouping of input and output devices.
Students will learn about different types of industrial input devices. In addition, trainees will study some troubleshooting procedures that will prove useful when one of these devices has failed.
Objectives
When a student complete this study unit, he and she will be able to:
Course #: 086067
Duration: 6 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: Preview
The purpose of an industrial output device is to perform controlled work. These devices may be used to start a motor or to control the supply of pressurized air or hydraulic fluid to the actuators of a machine or a robot. In every automated industry, some type of output device controls the functions of a machine.
This study unit focuses on various forms of output devices, output modules, closed-loop systems, and human and machine interfaces. These devices and systems make up the majority of today's industrial systems. This study unit also covers troubleshooting procedures for these systems.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 086068
Duration: 6 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: Preview
On today's factory floor, there are a wide variety of control systems. In the past, control systems were dedicated controllers, such as a motor's speed controller or a programmable logic controller (PLC). However, the type of dedicated controller is changing. The personal computer (PC) now controls or monitors many industrial processes. The personal computers that workers encounter may be standard models or specifically designed for industrial environments.
In addition to PCs, other equipment is used to identify each part of a manufactured product and the machines that created these parts. Bar code readers or scanners, and radio frequency tag systems perform these identification tasks. Vision systems listed above also identify component parts in an industrial environment. These systems employ a camera to closely analyze a component's features. All the systems require software to run the control or monitoring operations.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 086069
Duration: 6 hours
Course Prerequisites: Analog Electronic Components (Block B23);
What Students Learn: Preview
In industry today, the use of networks is rapidly growing. Only a few years ago, industrial networking was just in an experimental stage. Today, however, most systems are equipped with standard Ethernet connections and preconfigured network operating systems. Many forms of equipment, such as motor drives and PLCs, are able to share a network controlled by one or more large personal computers.
This study unit provides students with an introduction to industrial networks. Trainees will become familiar with the terminology and learn about the components used in these systems. Trainees will realize that industrial networking is an exciting and fast growing field.
Objectives
When a student complete this study unit, he and she will be able to:
Course #: 286M01
Duration: 35 hours
Course Prerequisites: Basic Industrial Math (Block X21);
What Students Learn: Lesson 1 - Pneumatic Instrumentation for Industry:
Course #: 286M04
Duration: 45 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: This course introduces the fundamentals of control system components and operation. Students will learn how a control system works and how its operating characteristics can be interpreted from schematics and ladder logic diagrams. The course will explain how mechanical, hydraulic, pneumatic, electrical, and electronic components used in control systems measure parameters. These measurements are then converted into useful data or the appropriate control system response. The course discusses the use of feedback loops and their applications in real-world control systems. The student will understand how electronic systems are combined to deliver their acceptable data "signals" to computers. In conclusion, the student will learn how PLCs are used throughout industry to control complex systems.
Part 1 (286076) . Lesson 1 - Introduction to Control Systems
Course #: 6305A-B
Duration: 20 hours
Course Prerequisites: Control Technology for Technicians (286M04); Electricity (4210A-C); Heat, Part 1 (686001); Heat, Part 2 (686002); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (6305A). Automation; Nature of Control Systems; Control Action; Self-Powered Controllers; Powered Controllers.
PART 2 (6305B). Powered Controllers; Controller Settings; Failure of Automatic Control Systems; Cascade Control Systems; Glossary.
Course #: 6306A-B
Duration: 20 hours
Course Prerequisites: Control Technology for Technicians (286M04); Electricity (4210A-C); Principles of Automatic Process Control Instruments (6305A-B); Heat, Part 1 (686001); Heat, Part 2 (686002); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (6306A). Basic Concepts; Thermocouple Circuits and Connections; Thermocouple Materials and Construction, Thermocouple Measuring Instruments; Electric Interference.
PART 2 (6306B). Types of Filled Thermal Systems; Bourdon Element; Temperature Compensation; Resistance Temperature Detectors; Radiation Pyrometry; Types of Radiation Pyrometers; Methods of Temperature Control.
Course #: 6307
Duration: 10 hours
Course Prerequisites: Control Technology for Technicians (286M04); Electricity (4210A-C); Principles of Automatic Process Control Instruments (6305A-B); Heat, Part 1 (686001); Heat, Part 2 (686002); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Importance of Control Valves; Types and Construction Features of Various Control Valves; Types of Valve Motors; Application of Valve Motors and Control Valves; Basic Function of Valve Positioner; Applications of Valve Positioners; Definition of Control Valve Rangeability and Valve Coefficient; Sizing of Control Valves for Liquid, Gas, and Steam.
Course #: 6308A-B
Duration: 20 hours
Course Prerequisites: Control Technology for Technicians (286M04); Electricity (4210A-C); Automatic Process Control Valves (6307); Principles of Automatic Process Control Instruments (6305A-B); Heat, Part 1 (686001); Heat, Part 2 (686002); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (6308A). Introduction to Fluid Flow; Standard Primary Elements; Additional Primary Elements; Measurements; Selection of Primary Elements; Proper Application of Primary Elements; Locating Primary Elements; Use of Straightening Vanes.
PART 2 (6308B). Mechanical Flowmeters; Bellows- and Diaphragm-Actuated Manometers; Other Types of Meters; Flow Measurement.
Course #: 6309A-B
Duration: 20 hours
Course Prerequisites: Control Technology for Technicians (286M04); Electricity (4210A-C); Principles of Automatic Process Control Instruments (6305A-B); Heat, Part 1 (686001); Heat, Part 2 (686002); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (6309A). Pressure Measuring Considerations; Pressure Measuring Devices, such as Manometers, Draft Gages, Inverted Belts, Differential Elements, Bellows, and Diaphragm Devices; Bourdon Tube; Spiral and Helical Pressure Meters; Chemical Pressure Gages; Pressure Indicators and Recorders.
PART 2 (6309B). Calibration Standards and Methods, including Details of Dead Weight Tester, Test Gages, and Gage Errors; Pressure Measuring and Control Instruments and Equipment; Process Pressure Application Considerations; Automatic Control of Process Pressure; Selection of Pressure Instruments for Process Pressure Applications.
Course #: 6338A-B
Duration: 20 hours
Course Prerequisites: Control Technology for Technicians (286M04); Electricity (4210A-C); Automatic Process Control Valves (6307); Principles of Automatic Process Control Instruments (6305A-B); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (6338A). Visual Indicators such as Sight Gages; Buoyancy Level Controllers, both of the Moving Float and Displacement Type; Static- and Differential-Pressure Level Controllers; Gamma Radiation Level Controllers.
PART 2 (6338B). Temperature Sensitive Level Controllers and the Electrical Conductivity Type of Level Controller; Explanations of the Special Requirements of Liquid Level Control with Emphasis on Control of Hazardous Types of Liquids and Selection of Level Controls for Various Types of Process Applications.