> > > Design and Applications of Mechanical Components/Power Transmission Systems Courses

Courses

Design and Applications of Mechanical Components/Power Transmission Systems

Bearings and Seals, Part 1

Course #: 286093
Duration: 10 hours
What Students Learn: Preview
Bearings of one type or another have been used since the invention of the most primitive machines. Bearings support rotating machine shafts as well as translating movement in machine components, and bearings keep the components in correct alignment.

This study unit, will primarily discuss plain bearings. However, so that students understand the fundamental differences, it will briefly cover antifriction bearing operation. Students will get a basic understanding of the differences between plain bearings and antifriction bearings. The study unit will then discuss the various types of plain bearings and their uses in greater detail.

Because bearings are used in such a wide range of applications, there are many factors to consider when selecting a bearing for a specific need. It is important that students understand these factors and the process for choosing the correct bearing and lubrication method for an intended application. In this study unit, students will also learn about the different techniques and tools used to properly install, lubricate, and remove bearings.

Objectives
When a student completes this study unit, he and she will be able to:

  • Understand what friction is and how bearings help reduce it.
  • Explain the difference between plain and antifriction bearings.
  • List the different types of plain bearings.
  • Understand the characteristics of plain bearings.
  • Know the importance of proper handling and installation of bearings.
  • Recognize the importance of proper bearing lubrication.
  • List the different materials used to make plain bearings and how material type affects their use.
  • Explain how to prevent premature bearing failure.

    Contents
    Introduction to Bearings; Journal Bearings; Other Types of Plain Bearings; Installing and Maintaining Plain Bearings; Plain Bearing Failure.

    Special Notes: This updated course replaces 2602.

  • Bearings and Seals, Part 2

    Course #: 286094
    Duration: 10 hours
    What Students Learn: Preview
    Bearings and seals are used in most every type of machine. This study unit will help you learn how to identify, lubricate, maintain, and replace antifriction bearings and seals.

    As students know, there are two types of bearings, plain and antifriction. Plain bearings use a sliding motion to reduce friction, while an antifriction bearing contacts the shaft it supports with a rolling element. This rolling motion helps reduce friction. The rolling motion produces less friction than the sliding motion produced from plain bearings. Therefore, the rotation of a shaft is smoother with an antifriction bearing.
    In this study unit, students will learn about the various types of antifriction bearings and their different parts. They will also learn about the basic characteristics of these bearings, and how to apply them to a particular shaft. The study unit will also cover proper installation and maintenance and properly applying them. An important part of proper application is correctly combining the various materials available in bearings with the material the shaft is made from.

    This study unit will also help students better understand seals. They will learn what a seal does, the different types of seals available, and how they are used. Students will also learn; the various types of material that seals are manufactured from, their advantages, the importance of maintaining bearings, and how to replace seals when they fail.

    Objectives
    When a student completes this study unit, he and she will be able to:

  • Identify the various elements used in antifriction bearings.
  • Properly identify and correct problems in antifriction bearings.
  • Choose the proper seal.
  • Choose and apply the proper lubricants for seals and antifriction bearings.
  • Understand the need for clearance and tolerances in bearings.
  • Identify the various parts of a seal.

    Contents
    Antifriction Bearings; Antifriction Bearing Replacement; Maintaining Antifriction Bearings; Installing and Maintaining Lip Seals.

    Special Notes: This updated course replaces 2602.

  • Lubrication, Part 1

    Course #: 286091
    Duration: 10 hours
    What Students Learn: Preview
    Since the development of machinery, there has been a war against friction. Friction causes machinery to vibrate excessively, sound louder, use more energy to do a given job, and, most importantly, wear out faster. To counter friction, lubricants have been developed.

    Lubricants were once basic animal fats and plant oils used on simple machines. Today's lubricants are chemical compositions specially designed for specific types of machines and their work environment. There are now hundreds of types of oils and grease to select from, each tailored specifically for the machine or an individual component of any given machine.

    This study unit is designed to give students the information they need to understand how lubricants are blended into these very special compounds and how they are selected for various applications.

    Objectives
    When a student completes this study unit, he and she will be able to:

  • Describe the various types of friction.
  • Discuss how materials wear.
  • List the various functions lubricants perform in industry.
  • Explain how lubricants reduce friction.
  • Classify lubricants depending upon their composition, properties, and additives.
  • Understand why certain lubricants are chosen for certain tasks.
  • Explain how to safely handle and store lubricants.

    Contents
    Friction and Wear; The Purpose of Lubricants; How Lubricants are Classified; How Lubricants Work; Proper Lubricant Selection; Handling and Storing Lubricants Safely.

    Special Notes: This updated course replaces 2531A.

  • Lubrication, Part 2

    Course #: 286092
    Duration: 10 hours
    What Students Learn: Preview
    Lubricating equipment is one of the most important industrial maintenance activities performed. Lubricants reduce friction, which saves on energy costs. They reduce wear, which saves on equipment maintenance costs. Proper lubrication significantly reduces machine downtime resulting from broken or worn out components. In addition, proper lubricating practices help keep a machine in tolerance for a longer period of time.

    In today's world of twenty-four-hour-a-day, seven-days-a-week, plant operation, the role of lubrication takes on even greater importance. Equipment must be lubricated on a timely schedule, in the proper amounts, and with the correct lubricants to sustain long work cycles between planned shutdowns. This study unit will show you how to properly apply lubrication and maintain lubrication systems.

    Objectives
    When a student completes this study unit, he and she will be able to:

  • Explain how to manually apply various types of lubricants in an industrial environment.
  • Describe total-loss lubrication.
  • Identify a nonloss lubrication system's components and describe their operation.
  • Explain how to maintain a nonloss lubrication system.
  • Identify the proper lubrication procedures to use for special industrial applications including sealed bearings, oil-impregnated bearings and food-processing plants.
  • Explain how lubricant-conditioning systems work and how to maintain them.
  • Describe how automatic lubrication systems work and how to maintain them.
  • List the tasks involved in preventive and predictive lubrication maintenance.

    Contents
    Manual Methods of Lubrication; Lubricating Total-Loss Systems; Nonloss Lubrication Systems; Lubrication in Special Environments; Lubrication Conditioning; Automatic Lubrication Systems; Preventive and Predictive Lubrication Maintenance.

    Special Notes: This updated course replaces 2531B.

  • Link Mechanisms

    Course #: 2603
    Duration: 10 hours
    Course Prerequisites: Engineering Mechanics, Part 4 (286039); Engineering Mechanics, Part 1 (286036); Engineering Mechanics, Part 2 (286037); Engineering Mechanics, Part 3 (286038); Elementary Mechanical Drawing (5434);
    What Students Learn: Definition of Terms; Plane Motion of a Rigid Body; Levers; Linkages; Quick-Return Mechanism; Straight Line and Parallel Motions; Kinematics of Link Mechanisms; Graphical Determination of Velocity; Graphical Determination of Acceleration; Kinematic Analysis.

    Gearing

    Course #: 2446
    Duration: 10 hours
    Course Prerequisites: Engineering Mechanics, Part 4 (286039); Engineering Mechanics, Part 1 (286036); Engineering Mechanics, Part 2 (286037); Engineering Mechanics, Part 3 (286038);
    What Students Learn: Rolling Curves and Surfaces; Spur Gearing; Proportions of Gear Teeth; Calculations of Spur Gears; Involute Systems; Cycloidal or Rolled-Curve System; Construction of Tooth Profiles; Helical Gearings; Spiral or Screw Gearings; Worms and Worm Gears; Bevel and Spiral Bevel Gears; Gear Cutting; Milling; Straight Hobs; Taper Hobs; Gear Finishing.

    Gear Trains

    Course #: 2604
    Duration: 10 hours
    Course Prerequisites: Gearing (2446); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
    What Students Learn: Use of Trains; Velocity Ratio of Train Gears; Compound Gearing; Speed Change Gearing; Epicyclic Gears; Planetary Gear Trains; Reversing Mechanism; Ratchet Mechanisms.

    Cams

    Course #: 2605
    Duration: 10 hours
    Course Prerequisites: Plane Trigonometry (2309A-B); Elementary Mechanical Drawing (5434);
    What Students Learn: General Classification; Uses of Cams; Types of Cams; Fundamentals of Cam Motion; Basic Curves; Combination Curves; Cam Size Determination; Cam Profiles by Calculation.

    Mechanical Power Transmission

    Course #: 286015
    Duration: 10 hours
    What Students Learn: Gears and Enclosed Gear Drives; Electric Motors; Maintenance of Gearing; Precision Chains and Chain Drives; Belt Drives; Correction for Shaft Misalignment; Clutches; Application Considerations for Mechanical Power Transmission.

    Special Notes: This updated course replaces course 2606.

    Belt Power Transmission

    Course #: 2607A-B
    Duration: 20 hours
    Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02);
    What Students Learn: PART 1 (2607A). General Considerations on Belt Drives; Basic Theory of Belt Power Transmission; Types of Belt Drives; Application of V-Belt Drives; Application of Flat Belt Drives; Belt Drive Installation and Maintenance; Appendix.
    PART 2 (2607B). Application of Special Belt Drives; Additional Considerations in Belt Drive Applications; New Developments in Belt Drives.

    Jigs and Fixtures

    Course #: 5099
    Duration: 10 hours
    Course Prerequisites: Basic Machining Skills (Block X08);
    What Students Learn: Types of Jigs; Examples of Jigs; Jig Parts and Accessories; Bushings; Jig Covers and Clamps; Miscellaneous Details of Jigs; Fixtures; Common Vise Fixture; Special Vise Fixture; Bolted Fixture: Combination Jig and Fixture; Trunnion Fixture; Roller Fixture; Broaching Fixture.

    Fundamentals of Tool Design

    Course #: 3535A-G
    Duration: 70 hours
    Course Prerequisites: Plane Trigonometry (2309A-B); Principles of Mechanics, Part 1 (286007); Principles of Mechanics, Part 2 (286008); Logarithms (5254); Properties of Materials (686005); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
    What Students Learn: PART 1 (3535A). Design of Material-Cutting Tools; Single-Point Tools; Basic Principles of Multiple-Point Tools; Linear-Travel Tools; Axial-Feed Rotary Tools; Control of the Causes of Tool Wear and Failure.
    PART 2 (3535B). Workholding Devices; Elements and Types of Fixture Design; Evolution of Workholders; Fixture Design Summary.
    PART 3 (3535C). Design of Pressworking Tools; Power Presses; Cutting (Shearing) Operations; Types of Die-Cutting Operations; Piercing-Die Design; Blanking-Die Design; Compound-Die Design; Scrap-Strip Layout for Blanking; Commercial Die Sets; Evolution of a Blanking Die; Evolution of a Progressive Blanking Die.
    PART 4 (3535D). Bending Dies; Forming Dies; Drawing Dies; Evolution of a Draw Die; Progressive Dies; Selection of Progressive Dies; Strip Development for Progressive Dies; Evolution of a Progressive Die; Examples of Progressive Dies; Extrusion Dies; Tool Design for Forging; The Forging Process; Forging Design; Drop Forging Dies and Auxiliary Tools; Upset or Forging Machine Dies.
    PART 5 (3535E). Design of Tools for Inspection and Gaging; Workpiece Quality Criteria; Basic Principles of Gaging; Gage Types and Applications; Amplification and Magnification of Error; Gaging Positionally Toleranced Parts.
    PART 6 (3535F). Tool Design for the Joining Process; Tooling for Physical Joining Processes; Tooling for Soldering and Brazing; Tooling for Mechanical Joining Processes; Tooling for Casting; Sand Casting; Shell Mold Casting; Metal Mold Casting; Die Casting.
    PART 7 (3535G). General Considerations in Tool Design; Safety as Related to Tool Design; Tool Materials; Heat-Treating; Surface Roughness; Fits and Tolerances; Tooling Economics; Material Handling at the Workplace; Rules for Good Design.

    Special Notes: Covers subject at an advanced, in-depth level.

    Gear Making

    Course #: 5532A-B
    Duration: 20 hours
    Course Prerequisites: Gear Calculations (2243); Plane Trigonometry (2309A-B); Milling Machines, Part 1 (386006); Milling Machines, Part 2 (386007); Milling Machines, Part 3 (386008); Milling Machine Practice (386009); Milling Machine Indexing and Spiral Work (386014); Practical Measurements (Block X22);
    What Students Learn: PART 1 (5532A). Processes; Cutters; Tooth Dimensions; Milling Spur Gear; Helical Gears; Bevel Gears; Worm Gears; Internal Gears; Planning; Generating; Herringbone Gears.
    PART 2 (5532B). Hobbing; Spiral Bevels; Hypoids; Gear Finishing; Rack Shaving; Rotary Shaving; Curve Shaving; Burnishing; Lapping; Grinding; Gear Inspection; Gear Materials; Heat Treatment; Flame Hardening.

    Servomechanisms

    Course #: 2028A-B
    Duration: 20 hours
    Course Prerequisites: AC Principles (Block A22); Basic Electronic Circuits (Block B24);
    What Students Learn: PART 1 (2028A). Basic Concepts of Automatic Control Systems and Servomechanisms, Electric and Hydraulic Servo Motors and Drive Systems; Types of Servo Amplifiers; Characteristics of DC Servo Motors; Feedback Devices, such as Potentiometers, Synchros, and Resolvers; Error Detectors; Operational Amplifiers; Performance Criteria for Servo Systems.
    PART 2 (2028B). Introduction to Machines Controlled by Servos; Types of Control Operations; Performance Requirements for the Basic Applications; Drive Systems, including Input, Feedback, and Amplifying Elements; Servo Errors, Gain, Stability, Accuracy, and Linearity Requirements and Limitations; Testing and Adjusting Servos.

    Special Notes: Covers subject at an advanced, in-depth level.

    Clutches and Brakes

    Course #: VS65XX
    Duration: 0.78 hours
    What Students Learn: Power transmission components are critical to the success of industrial machinery. This course focuses on clutches and brakes and their purpose and applications. This course is essential for students needing a strong foundation in all aspects of industrial clutches and brakes.
    Components: Clutches and Brakes, Volume 1 (VS6501); Clutches and Brakes, Volume 2 (VS6502);

    Gears and Gear Systems

    Course #: VS66XX
    Duration: 33 hours
    What Students Learn: Knowledge of gears and gear systems is critical in today's mechanized world. This course was designed specifically for maintenance technicians and engineers whose job requires comprehensive knowledge of gears and gear related topics. This course covers gear basics, installations, maintenance and troubleshooting.

    This course will explain parallel and perpendicular shaft configurations; attributes of gears; installation procedures specific to spur, helical, bevel, miter, and worm gearing; and types of wear associated with open gearing systems.

    Students will learn about:
    bullet Gear considerations

  • Calculating critical dimensions of gears
  • Inspection procedures for spur, helical, bevel, miter and worm gear sets
  • Symptoms and determining causes of failure
  • Solutions for open gear systems
  • Safety procedures with open gear systems

  • Shaft Joining and Coupling Devices

    Course #: VS67XX
    Duration: 32 hours
    What Students Learn: In order for most power machinery to operate, power transmission from a driving shaft to a driven shaft is necessary. This course discusses the principles and applications of shaft joining and coupling, and teaches important troubleshooting strategies and remedies.

    The course covers the identification of different types of shaft joining and coupling devices; safety precautions to follow when performing inspection, maintenance, and repairs; and installing, mounting, aligning and testing a fluid coupling.

    Students will be able to:

  • Understand the operating principles governing shaft joining and coupling devices
  • Identify cirtical application considerations when selecting a connecting device
  • Differentiate between rigid, flexible, fluid couplings, and universal joints based upon construction, purpose and application
  • Install and align mechanical couplings
  • Maintain mechanical couplings
  • Maintain a fluid coupling
  • Troubleshooting fluid couplings, recognizing system, cause and remedy

  • Enclosed Drive Systems

    Course #: VS68XX
    Duration: 21 hours
    What Students Learn: Drive systems are common to industry and are responsible for moving conveyors, sections of machines or complete machines. In this course, the different types of enclosed gear drives, along with their major components, are discussed in detail to build confidence and competence in this essential area. All aspects of enclosed drive systems are covered including: adjustable speed drives, installation, maintenance and troubleshooting procedures.

    The course will cover the principles of operation and terminology used in enclosed drive systems; identifying the various types of adjustable speed enclosed drives; applications of an enclosed chain drive system; and installing an enclosed drive.


    Students will learn about:

  • Components used in an enclosed gear drive
  • Identifying different gear types and operation
  • Applications for enclosed gear drives
  • Component parts and operation of an enclosed chain drive
  • Proper maintenance procedures
  • Proper procedures when troubleshooting an enclosed drive system

  • Complete Drive Packages

    Course #: VS69XX
    Duration: 27 hours
    What Students Learn: Knowledge of the components and operation of directly coupled drive systems is critical to the success or failure of industrial machinery. This course covers the basics of drive packages teaching fundamentals, components, and troubleshooting.

    The course covers:

  • Understanding of the components of a directly coupled drive system
  • Understanding of the components of jackshaft and auxiliary drive systems
  • Computing drive system efficiency
  • Troubleshooting strategies for drive packages

    Students will learn about:
  • Characteristics of operation unique to directly coupled drive systems
  • Unique properties of jackshaft and auxiliary drive systems
  • Effects of changing input and output speeds on auxiliary and jackshaft drive systems
  • Principles of operation for spring operated, shear pin and heat actuated overload devices

  • Electrician Training worker
    View Programs
    From foundational skills to advanced career training, we offer over 3,000 courses aligned with 35+ occupational pathways.
    Man Auto Worker
    Download Case Study
    Learn how UAW-Ford filled its skills gap with Penn Foster.
    Construction Workers
    Download Report
    Discover exclusive insights on training and development from skilled trades leaders.
    TOP