> > > Electrical Motors Courses

Courses

Electrical Motors

Industrial Motor Applications

Course #: 4341
Duration: 10 hours
Course Prerequisites: Industrial DC Motors (086051); Industrial AC Motors (086052); AC Principles (Block A22);
What Students Learn: Motor Torque; Inertia of Loads; Motor Types and Characteristics; Power-Supply Factors; Types of Drives; Braking of Motors; Intermittent Service; Mechanical Connecting Devices; Motor-Driven Power Pumps; Fans and Blowers; Reciprocating, Rotary, and Centrifugal Compressors.

DC Machines

Course #: 4030A-B
Duration: 20 hours
Course Prerequisites: DC Motors and Generator Theory (086006); Industrial DC Motors (086051); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (4030A). Operation Principles of DC Generators and Motors; Voltage Generators; Motor Action; Electric Connections; Effects of Magnetic Saturation and Armature Reaction; Principal Parts such as Brushes, Bearings, Frame, and Rotor; Machine Applications and Ventilation.
PART 2 (4030B). Operational Characteristics of Shunt-Wound, Series-Wound, and Compound-Wound DC Generators and Motors; Starting and Controlling DC Motors; DC Machine Losses and Efficiency; Load, Temperature, and Speed Ratings; Special DC Machines such as Three-Wire Generators, Voltage Regulators, and Permanent-Magnet Motors.

Special Notes: Covers subject at an advanced, in-depth level.

Alternating Current Motors

Course #: 4032
Duration: 10 hours
Course Prerequisites: AC Principles (Block A22); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: Principles of Operation of Induction Motors; Polyphase Primaries and Polyphase Secondaries; Squirrel-Cage Rotor, Phase-Wound Rotors; Starting Induction Motors; Squirrel-Cage Motors, Phase-Wound Motors; Performance and Speed Control: Adjustable-Speed Induction Motors; Synchronous Motors; Types, Operation, Theory, and Application; Single-Phase Motors: Types, Operating Characteristics.

Special Notes: Covers subject at an advanced, in-depth level.

Industrial DC Motors

Course #: 086051
Duration: 10 hours
Course Prerequisites: DC Principles (Block A21); Basic Industrial Math (Block X21);
What Students Learn: Advantages and Operating Characteristics of DC Motors that make them widely used in industrial applications; Function of each component of a DC Motor; Operation of a Single-Coil Armature Motor; Troubleshooting DC Motors; How a DC Motor Controller Operates; Identify and list applications for various types of DC Motors including Universal, Stepper, PM, Servo and Brushless Motors.

Special Notes: This new course replaces, DC Generators and Motors, course 6687.

Industrial AC Motors

Course #: 086052
Duration: 10 hours
Course Prerequisites: AC Principles (Block A22); Basic Industrial Math (Block X21);
What Students Learn: Construction and Operation of Single- and Three-Phase AC Motors; Principles of Electromagnetic Induction; Identify and work with Starter Systems for Single- and Ploy-Phase Motors including Shaded-Pole, Split-Phase Capacitor, and Repulsion-Induction Motors; Troubleshoot Polyphase Motor Systems.

Special Notes: This new course replaces, AC Motors, Generators and Rectifiers, course 6698.

Controlling Industrial Motors

Course #: 086053
Duration: 10 hours
Course Prerequisites: Industrial DC Motors (086051); Industrial AC Motors (086052); AC Principles (Block A22); Basic Industrial Math (Block X21);
What Students Learn: How Stepper Motors are Electronically Controlled; Steps to follow when Troubleshooting Stepper Motor Controls; Explain how AC Line Frequency sets Motor Speed; How Frequency Inverters Control Motor Speed in Three-Phase Installations; Describe how Servo Motors are Controlled; Explain how Brushless Motors Work and how their Shafts are precisely Positioned: List the steps to follow when Troubleshooting Brushless Motor Controller Systems.

Special Notes: This new course, in conjunction with courses 006010, 006011 and 006012 covering Industrial Motor Control for PLCs, replaces Industrial Motor Control, course 6699A-C.

Fractional Horsepower Motors

Course #: 4033
Duration: 10 hours
Course Prerequisites: AC Principles (Block A22);
What Students Learn: Operating Characteristics of Fractional Horsepower Motors; Split-Phase Motors; Capacitor-Start Motors; Two-Value and Permanent-Split Capacitor Motors; Shaded-Pole, Polyphase, DC, and Universal Motors; Brush-Shifting Repulsion Motors; Repulsion-Start, Repulsion-Induction, and Electrically Reversible Repulsion Motors; Thermal Overload Protection.

Predictive Maintenance

Course #: 286087
Duration: 5 hours
Course Prerequisites: Trades Safety: Getting Started (186001); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
What Students Learn: Preview
Predictive technologies measure one or more characteristics of machine operation, calculate the expected life of the monitored system, and then estimate the condition of equipment and, therefore, the need for maintenance on that equipment. With this information passed along to a good preventive maintenance program, the preventive maintenance team can make informed decisions on task scheduling and make the most of its maintenance and inspection tasks.

Vibration analysis programs are the most commonly conducted PDM efforts. By performing inspection and repairs during downtime, uptime failures of the analyzed components are all but eliminated. PDM is more than vibration analysis, however; multiple technologies, such as infrared thermography, balance, alignment, and electrical signature analysis are part of many PDM programs. Because of these technologies, plants run better and are more competitive. PDM allows maintenance departments to predict when a unit will fail and plan its maintenance during a scheduled downtime, usually when the unit is cooler, cleaner, and not needed for the manufacturing process.

Objectives
When a student completes this study unit, he and she will be able to:

  • Define what PDM is and how it can be used in industry.
  • Identify the various types of technologies used in PDM.
  • Explain what goals should be considered for a new and a maturing PDM program.
  • Discuss the scope of basic mechanical PDM.
  • Explain how a time waveform and a frequency spectrum can be used to identify machine faults.

    Contents
    What Is Predictive Maintenance?; Predictive Maintenance Program Goals; Basic Mechanical Predictive Maintenance; Forms Of PDM Data.

  • Predictive Maintenance: Vibration Analysis

    Course #: 286088
    Duration: 5 hours
    Course Prerequisites: Trades Safety: Getting Started (186001); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
    What Students Learn: Preview
    When a company decides to begin a predictive maintenance (PDM) program, the first technology usually embraced is vibration analysis. Vibration analysis allows the technicians or other specially trained personnel to perform condition monitoring of equipment. Condition monitoring is used at first as a coarse comb to pull out those programs that will imminently cause downtime. Then the program can progress beyond condition monitoring to provide scheduling services for preventive maintenance and identification of redesigns that address repetitive faults.

    This study unit will show you the basics of vibration analysis as performed with a data collector and a computer software program. These devices will be used to collect vibration measurement data and to store and display the results.

    Objectives
    When a student completes this study unit, he and she will be able to:

  • Explain how vibration measurements are taken and the systems used to identify measurement points.
  • Identify balance, looseness, and misalignment problems.
  • Discuss the techniques used to diagnose rolling-element bearing faults.
  • Explain how journal bearing condition monitoring and fault analysis is performed.
  • Identify speed reducer faults that occur in the gear sets or the internal bearings.
  • Describe how resonance can affect the operation of equipment.

    Contents
    Vibration Measurements; Analyzing Balance And Looseness Problems; Misalignment Of Inline And Overhung Drive Systems; Analyzing Rolling-Element Bearing Systems; Condition Monitoring Of Journal Bearings; Condition Monitoring Of Speed Reducers; Resonance.

  • Predictive Maintenance: Advanced Topics

    Course #: 286089
    Duration: 5 hours
    Course Prerequisites: Trades Safety: Getting Started (186001); Basic Industrial Math (Block X21); Practical Measurements (Block X22);
    What Students Learn: Preview
    Vibration analysis alone cannot perform sufficient condition monitoring to meet the needs of today's industry. Vibration analysis cannot easily find electrical faults, air leaks, electrical discharges, metal particles or contamination and breakdown of lubricants, or other important monitoring processes. Other technologies are needed for these tasks. This study unit will introduce you to these other technologies.
    In this study unit, we will investigate many different technologies that can and should often be part of a good predictive maintenance program (PDM). This course is designed to discuss these technologies at a basic level. If you're considering working with one of these technologies, it's very important to understand how to operate the equipment involved and to gain additional equipment training from the manufacturer. These actions will provide you with a safe and profitable expanded PDM program.

    Objectives
    When a student complete this study unit, he and she will be able to:

  • Explain the steps involved in performing balance and alignment on industrial machines.
  • Discuss the use and operation of ultrasonic equipment to find problems such as electrical arcing, bearing faults, and internal and external air leaks in pneumatic systems.
  • Describe the procedures used in electrical signature analysis (ESA) and how this inspection system can find motor problems.
  • Explain how oil analysis can find lubricant problems and contamination.
  • Describe how thermography can be used in a PDM environment.

    Contents
    Modern Balance And Alignment; Ultrasonic Testing; Electrical Signature Analysis; Oil Analysis; Infrared Thermography.

  • Rotating Machinery

    Course #: VB11XX
    Duration: 0.68 hours
    What Students Learn: This program is designed to introduce first year students and trainees to the fundamentals of rotating machinery. Vivid computer-generated graphics bring alive the principles of indicators in coils and show the end result of the rotating armature.
    Components: Magnets and Magnetism (VB1101); Electromagnetic Fields (VB1102); Coils, Saturation, and Hysteresis (VB1103);

    Direct Current Generators

    Course #: VB12XX
    Duration: 0.77 hours
    What Students Learn: An in-depth explanation is given to describing the structure of rotating machinery components, including magnetic fields, armature, wiring, along with the various rotating machinery configurations. The information is organized so that it correlates to the most current rotating machinery or electrical curriculums and training programs.
    Components: Basic Parts and Fundamentals (VB1201); Principles of Operation (VB1202); Major Types (VB1203);

    Motor Controls

    Course #: VS22XX
    Duration: 2.42 hours
    What Students Learn: This series is designed for new electrical maintenance workers who have little or no knowledge of motor controls. Some knowledge of electricity and electrical principals is recommended. All of the terms used in the series are explained and defined in the workbook, so the learners are not required to have an electrical vocabulary to understand the courses.
    The series covers the fundamentals of motor controls to include the subjects of basic controls, overload and time delay relays, schematic symbols, wiring diagrams; starting methods for squirrel cage, wye-delta, synchronous, and wound rotor controls; installing and troubleshooting techniques. The emphasis is to teach the specific skills required to understand basic motor controls. This series is intended to be used as an enhancement to your industrial maintenance program.
    Components: Basic Motor Controls and Relays (VS2201); Overload Relays (VS2202); Time Delay Relays (VS2203); Schematic Symbols (VS2204); Schematic and Wiring Diagrams (VS2205); Starting Methods for Squirrel Cage Motors (VS2206); Wye Delta, Synchronous, and Wound Rotor Controls (VS2207); Installing and Troubleshooting Control Systems (VS2208);

    Electrician Training worker
    View Programs
    From foundational skills to advanced career training, we offer over 3,000 courses aligned with 35+ occupational pathways.
    Man Auto Worker
    Download Case Study
    Learn how UAW-Ford filled its skills gap with Penn Foster.
    Construction Workers
    Download Report
    Discover exclusive insights on training and development from skilled trades leaders.
    TOP