Courses
Mechanical Maintenance
Course #: 286093
Duration: 10 hours
What Students Learn: Preview
Bearings of one type or another have been used since the invention of the most primitive machines. Bearings support rotating machine shafts as well as translating movement in machine components, and bearings keep the components in correct alignment.
This study unit, will primarily discuss plain bearings. However, so that students understand the fundamental differences, it will briefly cover antifriction bearing operation. Students will get a basic understanding of the differences between plain bearings and antifriction bearings. The study unit will then discuss the various types of plain bearings and their uses in greater detail.
Because bearings are used in such a wide range of applications, there are many factors to consider when selecting a bearing for a specific need. It is important that students understand these factors and the process for choosing the correct bearing and lubrication method for an intended application. In this study unit, students will also learn about the different techniques and tools used to properly install, lubricate, and remove bearings.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286094
Duration: 10 hours
What Students Learn: Preview
Bearings and seals are used in most every type of machine. This study unit will help you learn how to identify, lubricate, maintain, and replace antifriction bearings and seals.
As students know, there are two types of bearings, plain and antifriction. Plain bearings use a sliding motion to reduce friction, while an antifriction bearing contacts the shaft it supports with a rolling element. This rolling motion helps reduce friction. The rolling motion produces less friction than the sliding motion produced from plain bearings. Therefore, the rotation of a shaft is smoother with an antifriction bearing.
In this study unit, students will learn about the various types of antifriction bearings and their different parts. They will also learn about the basic characteristics of these bearings, and how to apply them to a particular shaft. The study unit will also cover proper installation and maintenance and properly applying them. An important part of proper application is correctly combining the various materials available in bearings with the material the shaft is made from.
This study unit will also help students better understand seals. They will learn what a seal does, the different types of seals available, and how they are used. Students will also learn; the various types of material that seals are manufactured from, their advantages, the importance of maintaining bearings, and how to replace seals when they fail.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: VS62XX
Duration: 1 hours
What Students Learn: This course is designed to familiarize the student with the basics of various types of gaskets, packing and seals. The course includes all types and properties, inspection, installation and troubleshooting.
Components: Industrial Seals: Types, Materials and Properties (VS6201); Industrial Seals: Gaskets and Packings; Inspection and Installation (VS6202); Industrial Seals: Mechanical Face Seals; Troubleshooting and Installation (VS6203);
Course #: 286091
Duration: 10 hours
What Students Learn: Preview
Since the development of machinery, there has been a war against friction. Friction causes machinery to vibrate excessively, sound louder, use more energy to do a given job, and, most importantly, wear out faster. To counter friction, lubricants have been developed.
Lubricants were once basic animal fats and plant oils used on simple machines. Today's lubricants are chemical compositions specially designed for specific types of machines and their work environment. There are now hundreds of types of oils and grease to select from, each tailored specifically for the machine or an individual component of any given machine.
This study unit is designed to give students the information they need to understand how lubricants are blended into these very special compounds and how they are selected for various applications.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: 286092
Duration: 10 hours
What Students Learn: Preview
Lubricating equipment is one of the most important industrial maintenance activities performed. Lubricants reduce friction, which saves on energy costs. They reduce wear, which saves on equipment maintenance costs. Proper lubrication significantly reduces machine downtime resulting from broken or worn out components. In addition, proper lubricating practices help keep a machine in tolerance for a longer period of time.
In today's world of twenty-four-hour-a-day, seven-days-a-week, plant operation, the role of lubrication takes on even greater importance. Equipment must be lubricated on a timely schedule, in the proper amounts, and with the correct lubricants to sustain long work cycles between planned shutdowns. This study unit will show you how to properly apply lubrication and maintain lubrication systems.
Objectives
When a student completes this study unit, he and she will be able to:
Course #: Block Y01
Duration: 32 hours
What Students Learn: The objective of this block is to provide the trainee with an introduction to the concepts, applications, and maintenance of fluid power systems. The course covers the common terms and the diagrams and schematics used in the fluid power systems found in a typical manufacturing facility. The physical concepts relating to energy transmission are described. Operation of the primary fluid power components are discussed in detail pumps, compressors, accumulators, pressure valves, and receivers. An overall systems integration and performance approach is used to assist the trainee in understanding key points. This course can be beneficial to an apprentice, at the entry or skilled worker level, and the mechanical maintenance staff. It will fit well in a mechanical cross training program developed for electrical or multi-craft workers.
Components: The Components of Fluid Power, Part 3 (Y0107); A Summary of Fluid Power (Y0108); Introduction to Fluid Power (Y0101); The Physics of Fluid Power (Y0102); Transmission and Storage of Energy by Fluid Power, Part 1 (Y0103); Transmission and Storage of Energy by Fluid Power, Part 2 (Y0104); The Components of Fluid Power, Part 1 (Y0105); The Components of Fluid Power, Part 2 (Y0106); Progress Examination (Y0121); Progress Examination (Y0122); Progress Examination (Y0123); Progress Examination (Y0124); Progress Examination (Y0125); Progress Examination (Y0126); Progress Examination (Y0127); Progress Examination (Y0128);
Course #: Y0101
Duration: 4 hours
What Students Learn:
Course #: Y0102
Duration: 4 hours
What Students Learn:
Course #: Y0103
Duration: 4 hours
What Students Learn:
Course #: Y0104
Duration: 4 hours
What Students Learn:
Course #: Y0105
Duration: 4 hours
What Students Learn:
Course #: Y0106
Duration: 4 hours
What Students Learn:
Course #: Y0107
Duration: 4 hours
What Students Learn:
Course #: Y0108
Duration: 4 hours
What Students Learn:
Course #: VB24XX
Duration: 1.47 hours
What Students Learn: This program is the ideal way to introduce first year students and entry level trainees to the basic concepts and principles of fluid power. Vivid computer graphics, along with real actuators and valves which have been cut open to reveal internal operations, help drive the very concepts that need to be remembered.
Components: Principles and Fluids (VB2401); Actuators (VB2402); Controls (VB2403); Pumps and Power Units (VB2404);
Course #: 286060
Duration: 10 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Introduction to Fluid Power (Block Y01);
What Students Learn: Introduction to Hydraulic Power; Physical Principles of Hydraulic Power and Energy; Pascal's Law; Bernoulli's Principle; Work and Power; Horsepower and Loss; Hydraulic Power Systems; Basic Components of Hydraulic Systems; Basic Hydraulic System Accessories; Fittings and Couplings; Characteristics of Hydraulic Systems; Comparing Power Systems; Requirements for Hydraulic Systems; Properties of Hydraulic Fluid; Fluid Storage, Handling, and Maintenance; Filters and Strainers; Heat Exchangers; Eliminating Air; Examples of Hydraulic Systems; Proportional Displacement; Hydraulic System Operation; Working Safely with Hydraulic Systems.
Special Notes: The entire course consists of study units 286060, 286061, 286062, 286063, 286064 and 286065.
Course #: 286061
Duration: 10 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Introduction to Fluid Power (Block Y01);
What Students Learn: Actuator Design, Detail, and Operation; Linear Actuators; Hydraulic Actuator Components; Rotary Actuators; Pumping Principles; Slippage; Pump Classifications; Gear Pumps; Vane Pumps; Double Pumps; Gear and Vane Pump Lubrication and Capabilities; Piston Pumps; Screw-type Pumps; Supercharging Pumps; Variable-displacement Pump Control Fundamentals; Hydraulic Motors; Comparing Pumps and Motors; Gear Motors; Screw Motors; Vane Motors; Piston Motors; Abutment-type Motors; Losses through Fluid Motors; Deceleration and Braking.
Special Notes: The entire course consists of study units 286060, 286061, 286062, 286063, 286064 and 286065.
Course #: 286062
Duration: 10 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Introduction to Fluid Power (Block Y01);
What Students Learn: Reservoirs and System Components; Types of Reservoirs; Reservoir Volume; Reservoir Components; Reservoir Interior Care and Auxiliary Tanks; Reservoir in Use; Practical Tips for Reservoir Selection and Maintenance; Conductors, Fittings, and Seals; Maintenance Tips for Conductors, Fittings, and Seals; Choice of Conductor Size and Materials; Types of Heat Exchangers; Automatic Temperature Control; Effective System Cooling Tips; Accumulators; Circuits Using Accumulators; Accumulator Safety; Hydraulic Fluids; Petroleum-based Fluids; Viscosity; Demulsibility; Oxidation Stability; Lubricating Value; Corrosion and Rust Prevention; Fire-resistant Fluids.
Special Notes: The entire course consists of study units 286060, 286061, 286062, 286063, 286064 and 286065.
Course #: 286063
Duration: 10 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Introduction to Fluid Power (Block Y01);
What Students Learn: Explain the Function of Control Components in a Typical Hydraulic System; Identify Control Valves by Pressure, Flow, or Directional Type; Explain the Operating Principles and Typical Internal Parts of Pressure, Flow, and Directional Valves; Interpret Schematic Symbols which represent Control Valve Configurations.
Special Notes: The entire course consists of study units 286060, 286061, 286062, 286063, 286064 and 286065.
Course #: 286064
Duration: 10 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Introduction to Fluid Power (Block Y01);
What Students Learn: Typical Schematic Layout; Recognizing Standard Schematic Symbols; Interpreting Control Configuration from Schematic Symbols; Evaluating System Operating Characteristics from Schematics.
Special Notes: The entire course consists of study units 286060, 286061, 286062, 286063, 286064 and 286065.
Course #: 286065
Duration: 10 hours
Course Prerequisites: Introduction to Algebra, Geometry, and Trigonometry (Block X02); Introduction to Fluid Power (Block Y01);
What Students Learn: Sizing Components to meet Requirements; Measuring and Evaluating System Operation; Assessing Motor and Pump Capacity and Performance; Special System Control including Servos and Pressure, Temperature, and Limit Switches; Performing Periodic Maintenance and Analyzing Inspection Information; Troubleshooting System Faults; Typical Hydraulic System Faults and Failures.
Special Notes: The entire course consists of study units 286060, 286061, 286062, 286063, 286064 and 286065.
Course #: VS64XX
Duration: 0.73 hours
What Students Learn: This course is ideal for students employed as engineers and others who require an advanced understanding of hydraulic systems operation and maintenance. From examining basic to complex circuitry, students will learn to troubleshoot and repair hydraulic systems.
Components: Hydraulic Power Systems and Troubleshooting, Volume 1 (VS6401); Hydraulic Power Systems and Troubleshooting, Volume 2 (VS6402);
Course #: 286001
Duration: 10 hours
Course Prerequisites: Hydraulic Components: Actuators, Pumps, and Motors (286061);
What Students Learn: Modern Centrifugal Pumps; Operating Principles of Pumps; Classifications and Types of Pumps; Fundamental Pump Terms: pressure, vapor pressure, head, losses, cavitation, net positive suction head, specific speed, viscosity; Centrifugal Pump Performance Curves; Types of Pumping System Curves.
Special Notes:
Course #: 286002
Duration: 10 hours
Course Prerequisites: Hydraulic Components: Actuators, Pumps, and Motors (286061);
What Students Learn: Construction details of Centrifugal Pumps; Applications of Centrifugal Pumps; Installation and Maintenance of Centrifugal Pumps; Troubleshooting problems associated with Centrifugal Pump Operation.
Special Notes:
Course #: 286003
Duration: 10 hours
Course Prerequisites: Hydraulic Components: Actuators, Pumps, and Motors (286061);
What Students Learn: Rotary Pumps: classifications, installation and operating principles; Reciprocating Pumps: classifications, installation and operating principles; Power Pumps; Applications of Rotary and Reciprocating Pumps; Troubleshooting Rotary and Reciprocating Pumps.
Special Notes:
Course #: 6623
Duration: 10 hours
What Students Learn: Atmospheric Pressure; Barometers; Properties of Gases; Relative Unit Pressure; Laws Relating to Change of State; Boyle's Law; Gay-Lussac's Laws; Combination of Boyle's and Gay-Lussac's Laws; Mixtures of Gases; Pneumatic Machines and Devices; The Air Pump; Apparatus Showing Weight and Pressure of Atmosphere; Siphon; Air Compressors.
Course #: 286M01
Duration: 35 hours
Course Prerequisites: Basic Industrial Math (Block X21);
What Students Learn: Lesson 1 - Pneumatic Instrumentation for Industry:
Course #: 286013
Duration: 10 hours
Course Prerequisites: Metric System (186011);
What Students Learn: Types of Compressors; Types of Comparison; Centrifugal Compressors; Axial-Flow Compressors; Construction Details of Centrifugal and Axial-Flow Compressors; Performance Curves; Installation and Performance Tests.
Special Notes:
Course #: 286014
Duration: 10 hours
Course Prerequisites: Metric System (186011);
What Students Learn: Reciprocating Compressors; Cylinder and Piston Arrangements; Construction Details of Various Types; Selection, Installation, and Operation of Reciprocating Compressors; Rotary Compressors; Construction Details; Lobe Compressors; Screw Compressors; Troubleshooting Rotary Compressors.
Special Notes:
Course #: VS21XX
Duration: 2.87 hours
What Students Learn: This series is designed for skilled maintenance workers who have some knowledge of pneumatics. All of the terms used in the series are explained and defined in the workbook. Fundamental topics included in the series are compressed air power, circuitry, air processing, valves, safety, maintenance, and troubleshooting.
Each course is introduced by identifying the specific competencies expected of the pneumatics maintenance worker. Then it explains the techniques that will result in his or her improved instruction. The emphasis is to teach the specific skills required to understand pneumatics. This series is intended to be used as an enhancement to your pneumatics curriculum.
Components: The Power of Compressed Air (VS2101); The Pneumatic Circuit (VS2102); Processing Air (VS2103); Using Compressed Air (VS2104); Pneumatic Control Valves (VS2105); Working Safely with Pneumatic Systems (VS2106); Pneumatic Systems Maintenance (VS2107); Troubleshooting Pneumatic Systems (VS2108);
Course #: 286015
Duration: 10 hours
What Students Learn: Gears and Enclosed Gear Drives; Electric Motors; Maintenance of Gearing; Precision Chains and Chain Drives; Belt Drives; Correction for Shaft Misalignment; Clutches; Application Considerations for Mechanical Power Transmission.
Special Notes: This updated course replaces course 2606.
Course #: 2511A-E
Duration: 50 hours
Course Prerequisites: Physics, Part 1 (686003); Physics, Part 2 (686004); Introduction to Algebra, Geometry, and Trigonometry (Block X02);
What Students Learn: PART 1 (2511A). Introduction to the Use of Vibration in the Maintenance of Machinery; Vibratory Motion; Characteristics of Vibration; Causes of Machine Vibration.
PART 2 (2511B). Vibration Measurement; Introduction to Instrumentation Analysis; Recording Data; Identification and Diagnosis; Vibration Tolerances.
PART 3 (2511C). Vibration Correction; Balancing Sources of Unbalance; Static Unbalance; Dynamic Unbalance; Single and Two-Plane Balancing; Balance Tolerances.
PART 4 (2511D). Theory of Isolation; Requirements; Materials; Interpretation of Data; Evaluation of Results.
PART 5 (2511E). Types of Instrumentation; Advantages and Disadvantages; Application and Maintenance.